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R. Follmann, D. Köther and I. Wolff
IMST GmbH, D–47475 Kamp-Lintfort, Germany, e-mail follmann@imst.de

Abstract— Non-linear models in circuit simulation software
often show a bad convergence behavior. In many cases,
this behavior results from non-smooth intrinsic equivalent
circuit element behavior due to measurement or extraction
inaccuracies. In our paper we present a new method for
smoothing and interpolating n-dimensional grids of equiva-
lent circuit elements using an FFT approach. Furthermore,
we demonstrate the influence of model smoothness to a
harmonic balance simulation.

I. INTRODUCTION

Equivalent circuit elements in dependence of control vol-
tages and temperatures can be calculated from S-parameter
measurements [1]. A straight forward approach to in-
terpolate these values of intrinsic elements is the use
of bi-cubic spline functions. This type of functions as
well as its first derivatives are continuous in the com-
plete area, where measurement values are available. Of
course, this method does not smooth any ripple resulting
from measurement inaccuracies. In order to overcome
simulation problems (convergence, non-smooth behavior
of compression curves, etc.) many non-linear transistor
models are using dedicated functional descriptions. Most
of these functions require a large parameter list in order to
describe the measured / physical behavior in dependence
of control voltages. In many cases these functions may fit
for certain technology or type of transistor while slightly
different devices can not be model with sufficient accuracy.
The bi-cubic spline function approach has no limitations
with respect to special technology or device characteristics.
Its only limitation is the sensitivity on measurement uncer-
tainties. Especially temperature dependent S-parameters,
which can be obtained from short pulsed measurements
with almost stable thermal conditions, may have quite high
uncertainties. Therefore, smoothing of either measured
data (S-parameters) or extracted data (e.g. Cgs) is required
in order to achieve very accurate simulations.

II. SMOOTHING OF SPLINE FUNCTIONS

There are several approaches to smooth spline functions:

• Local smoothing,
• Smoothie splines [2],
• Functional description [3].

In this paper another method will be presented, which
makes use of a Fourier transformation plus a filtering in

the ”frequency” domain. Here ”frequency” can either be
the transformed control voltages or temperature. Finally,
the back transformation gives new coefficients for a
functional description which may either be again bi-cubic
splines or any other function (e.g. Fourier row).

In many cases these function values are very smooth
while derivatives are more and more rough. Furthermore,
derivatives are required to calculate e.g. Jacobian matrix
(convergence improvement) or intermodulation properties.
From the samples given before, the resulting function
itself is almost equal for bi-cubic spline function and
FFT function. Thus, differences in extracted values are
more or less neglectable. Even for the first derivatives
the influence of filtering is not very significant while the
second derivatives of both functions show much more
severe influence of measurement uncertainty resp. its
filtering.

III. MATHEMATICAL DESCRIPTION

A bi-cubic splines easily can be expressed as

f (x1,x2) =
4
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c jkt j−1uk−1 (1)

with the spline coefficients c jk and
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A 2D FFT function g can be described as

g(x1,x2) =
M

∑
m=0

N

∑
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amn cos(mω1(x1 − x1min))

cos(nω2(x2 − x2min)), (4)

with ω1 = 2π/(x1max−x1min) and ω2 = 2π/(x2max−x2min).
For smoothing purpose, the following weighting function
is defined:
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This leads to a smoothed 2D FFT description as shown in
equation (6).

g̃(x1,x2) =
M̃

∑
m=0

Ñ

∑
n=0

amnW (mω1,K1)W (nω2,K2)
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with the new indices M̃ and Ñ

M̃ = min(M,
ω1max

ω1
) and Ñ = min(N,

ω2max

ω2
). (7)

Only cosine-terms are used in FFT description in order to
prevent unsteadiness. In this way the function is defined
beyond measured respective extracted range by mirroring
data at xmax (for FFT transformation only). This steady
function (extended range) reduces higher frequency
amplitudes, which would result from unsteady functional
extension.
Even a cosine functional extension has unsteady
derivatives at mirror point xmax. Introducing a guard
interval with adjustable length between initial function
range and mirror range and continuous interpolation in
between results a much better behavior in ”frequency”
domain. These little tricks guarantee that the data used
for FFT transformation has continuous derivatives.
Otherwise, unsteady functions would cause a decrease
of amplitudes in frequency domain proportional to a
si-function (sin(x)/x). That is a quite poor decay and high
frequency parts are required at achieve smooth behavior.
If high frequency amplitudes are required, filtering in the
time domain will become very critical. The reduction of
high frequency contribution in this case would be related
to oscillation of the function in the definition range.
FFT coefficients simply can be determined by calculating
the function values at required points by use of the bi-
cubic spline function. Then, discrete FFT transformation
provide FFT coefficients.
Filtering of coefficients for FFT function can easily be
done. Using the exponential cosine filter with adjustable
exponent, frequency length and corner frequency offers
proper improvement of smooth behavior.
Considering all these opportunities in the right way,
the coefficients of an FFT function can be obtained.
This function can directly be used for interpolation
between xmin and xmax. Beyond these values special
extrapolation methods have to be considered. The
FFT function itself never can be used for this purpose.
Guard interval and mirror range are not physically defined.

Furthermore, the described method can be improved.
It is possible to define optimization criteria as sum
of deviations from measured function values plus
contributions from higher order derivatives. The deviation
of FFT interpolated values g from measured values yi can

be defined as

e0 =
I

∑
i=0

(yi −g(x1i,x2i))
2. (8)

As a second criterion a minimization of derivatives can be
used:
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x1max
∫

x1min

x2max
∫

x2min

(

∂ (i+ j)g

∂x(i)
1 ∂x( j)

2

)2

. (9)

The differences between measured respective extracted
data and FFT function is calculated as well as the integral
over the square of the derivatives of the FFT function
across the entire period in order to achieve the total error
E

E = w0e0 +
I

∑
i=0

J

∑
j=0

j+i6=0

wi jei j (10)

with the user defined weighting factors wi j and the spectral
amplitude coefficients amn to be optimized. The advantage
of this integration is that these quantities can be calculated
analytically. By this approach all error contributions can
be calculated by simples sums according to number of
frequency dimensions. Nevertheless, due to quite high
number of parameters (frequency amplitudes) the opti-
mization process takes some time. On the other side, this
has to be done just once per non-linear model or device.
After this optimization and smoothing, within the CAD
program fast functions like bi-cubic splines or even FFT
functions can be used. Parameters of optimization can
easily be adjusted.

IV. EXAMPLES

Fig. 1 shows an extracted gate-source capacitance for a
low noise HEMT. As can be seen, the extracted grid is
quite smooth. Nevertheless, when looking at the second
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Fig. 1. Extracted gate-source capacitance Cgs for an low noise HEMT
device.

derivative, large variations can be obtained (fig. 2). This
is due to the fact that the underlying spline function



simulates each measurement outlier correctly.
Thus, we applied the FFT smoothing algorithm proposed
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Fig. 2. Second derivative (spline based) of extracted Cgs.

earlier in this paper. After optimizing the FFT coefficients
for an order of 15, no difference between the original
extracted grid (fig. 1) and the FFT interpolated one could
be obtained. Using the FFT smoothed Cgs-grid delivers
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Fig. 3. Second derivative (spline based, fft smoothed) of extracted Cgs.

now a very smooth second derivative, as can be seen in
fig. 3. Here, the scale has been adjusted.

Table I shows, how important smooth intrinsic element
grids are for the simulation convergence speed under
large signal conditions.

Extraction non smoothed medium smoothed highly smoothed
Sim. time 48.26 s 38.12 s 36.57 s

TABLE I
HARMONIC BALANCE SIMULATION TIME.

The table shows the computation time for a two-tone
intermodulation simulation (-10 dBm . . . + 10 dBm step
0.5 dB RF power, f = 2 GHz, 100 kHz spacing, 10
harmonics) for a LDMOS device [4]. Despite of the total
computation time it is obvious that harmonic balance

within the circuit simulation software ADS converges
quicker, the more smooth the extracted values are. A
non-smoothed model converges 25% slower than a model
based upon smoothed extraction data.
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